Problems for Hausel's Lectures

- 1. Assume *E* and *F* are stable bundles on a smooth projective curve *C* of the same slope.
 - (a) Show that if $f: E \to F$ is a non-zero homomorphism then it is an isomorphism.
 - (b) Deduce that a stable bundle E is simple, i.e. any endomorphism of E is of the form λId_E .
 - (c) As a consequence calculate dim $T_{[E]}\mathcal{N} = \dim(H^1(C; \operatorname{End}(E))) = n^2(g-1) + 1$ for a stable vector bundle *E* using Riemann-Roch.
 - (d) Calculate also the dimension of the GL_n Hitchin base $\bigoplus_{i=1}^n H^0(C; K^i)!$
- 2. Let *M* be a non-singular complex algebraic variety. For $x = (m, \alpha) \in T^*M$, where $\alpha \in T^*_m M$ define $\theta_x : T_x T^*M \to \mathbb{C}$ given by $\theta_x(X) := \langle T_\pi(X), \alpha \rangle$, where $X \in T_x T^*M$ and $\pi : T^*M \to M$ is the projection. This defines a 1-form $\theta \in \Omega^1(T^*M)$ the so-called Liouville 1-form. Show that $\omega := d\theta \in \Omega^2(T^*M)$ is a nowhere degenerate 2-form, and because clearly $d\omega = 0$ it is a canonical symplectic form on the cotangent bundle of any variety *M*. When $M = \mathbb{C}^n$ find suitable coordinates on $T^*\mathbb{C}^n$ to get $\theta = \sum_i^n x_i dy_i$ and consequently $\omega = \sum_i^n dx_i \wedge dy_i$.
- 3. Determine the dimension of the affinization $\operatorname{Spec}(H^0(T^*M, O_{T^*M}))$ when (a) *M* is a smooth projective curve of genus *g* (b) $M = \mathbb{P}^n$ or more generally a partial flag variety (c) *M* is a smooth projective toric variety.
- 4. Let *E* be a complex elliptic curve; *N* a degree 0 non-torsion invertible sheaf on *E* and *P* a degree −1 invertible sheaf on *E*; and let *X* be the total space of the rank 2 vector bundle N ⊕ P on *E*. Show that the algebra of global functions H⁰(X, O_X) on X is not finitely generated. (Example due to Ravi Vakil.) (Hint: Consider the natural (ℂ[×])² action on N ⊕ P and deduce that H⁰(X, O_X) = ⊕[∞]_{k l=0} H⁰(E, N^{-k} ⊗ P^{-l}).)
- 5. Determine the moduli space of rank 1 stable Higgs bundles on a smooth projective curve *C*. Describe the Hitchin map explicitly.
- 6. Consider the space V_n of monic degree *n* complex polynomials and show that it is isomorphic with the space of unordered complex *n*-tuples. Deduce Chevalley's isomorphism $V_n = \mathbb{C}^n \cong \mathbb{C}^n / S^n$, where the symmetric group S^n acts on \mathbb{C}^n by permuting the coordinates. Identify on $V_n = \mathbb{C}_n$ the \mathbb{C}^{\times} -action induced from multiplying unordered *n*-tuples with the same scalar. (The only natural structure on the space V_n is this \mathbb{C}^{\times} -action - the vector space structure is an accident.)